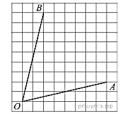
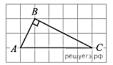
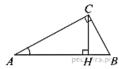

Подготовка к ЕГЭ

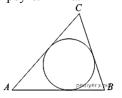

- **1) Задание 1.** В доме, в котором живёт Женя, один подъезд. На каждом этаже по восемь квартир. Женя живёт в квартире 87. На каком этаже живёт Женя?
- 2) Задание 2. В ходе химической реакции количество исходного вещества (реагента), которое еще не вступило в реакцию, со временем постепенно уменьшается. На рисунке эта зависимость представлена графиком. На оси абсцисс откладывается время в минутах, прошедшее с момента начала реакции, на оси ординат масса оставшегося реагента, который еще не вступил в реакцию (в граммах). Определите по графику, сколько граммов реагента вступило в реакцию за три минуты?

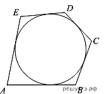
3) Задание 2. Материальная точка движется от начального до конечного положения. На рисунке изображён график её движения. На оси абсцисс откладывается время в секундах, на оси ординат — расстояние от начального положения точки (в метрах). Найдите среднюю скорость движения точки. Ответ дайте в метрах в секунду.

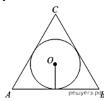

4) Задание 3. На клетчатой бумаге с размером клетки 1×1 изображён угол *BOA*. Найдите тангенс этого угла.

5) Задание 3. На клетчатой бумаге с размером клетки 1 на 1 изображён равносторонний треугольник. Найдите радиус описанной около него окружности.


6) Задание 3. На клетчатой бумаге с размером клетки 1 на 1 изображён прямоугольный треугольник. Найдите радиус окружности, описанной около этого треугольника.

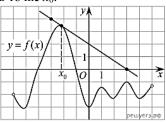

- 7) Задание 4. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 16 спортсменов из России, в том числе Игорь Чаев. Какова вероятность того, что в первом туре Игорь Чаев будет играть с какимлибо бадминтонистом из России.
- **8)** Задание **5.** Найдите корень уравнения $\sqrt{6+5x} = x$. Если уравнение имеет более одного корня, укажите меньший из них.
- **9**) **Задание 6.** Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

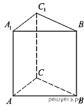

10) **Задание 6.** В треугольнике ABC угол C равен 90°, высота CH равна 4, BC = 8. Найдите $\cos A$.


11) **Задание 6.** Площадь треугольника равна 24, а радиус вписанной окружности равен 2. Найдите периметр этого треугольника.

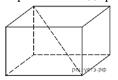
12) **Задание 6.** Около окружности, радиус которой равен 3, описан многоугольник, периметр которого равен 20. Найдите его площадь.

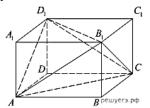
13) **Задание 6.** Сторона правильного треугольника равна √3. Найдите радиус окружности, вписанной в этот треугольник.


14) Задание 6. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.


15) **Задание 6.** (522916) Одна сторона треугольника равна $\sqrt{2}$ радиус описанной окружности равен 1. Найдите острый угол треугольника, противолежащий этой стороне. Ответ дайте в градусах.

16) Задание 7. На рисунке изображены график функции y = f(x) и касательная к этому графику, проведённая в точке x_0 . Найдите значение производной функции g(x) = 6f(x) - 3x в точке x_0 .


17) **Задание 8.** Найдите объем многогранника, вершинами которого являются точки A, B, C, A_1, C_1 правильной треугольной призмы $ABCA_1B_1C_1$, площадь основания которой равна 3, а боковое ребро равно 2.


18) **Задание 8.** Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.

19) Задание 8. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда.

20) **Задание 8** (25865) Объем параллелепипеда $ABCDA_{1}B_{1}C_{1}D_{1}$ равен 2,7. Найдите объем треугольной пирамиды $AD_{1}CB_{1}$.

21) **Задание 8.** Площадь большого круга шара равна 17. Найдите площадь поверхности шара.

- **22) Задание 8.** Объем шара равен 288π . Найдите площадь его поверхности, деленную на π .
- **23) Задание 8.** Длина окружности основания конуса равна 3, образующая равна 8. Найдите площадь боковой поверхности конуса.
- **24**) **Задание 8.** Объем первого цилиндра равен 48 м³. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого. Найдите объем второго цилиндра. Ответ дайте в кубических метрах.
- **25)** Задание 9. Найдите значение выражения $\sqrt{8} \sqrt{32} \sin^2 \frac{11\pi}{8}$.
- **26**) **Задание 9.** Найдите значение выражения $log_50, 2 + log_{0,5}4$.

27) Задание 10.

Ёмкость высоковольтного конденсатора в телевизоре $C=2\cdot 10^{-6}$ Ф. Параллельно с конденсатором подключен резистор с сопротивлением $R=5\cdot 10^6$ Ом. Во время работы телевизора напряжение на конденсаторе $U_0=16$ кВ. После выключения телевизора напряжение на конденсаторе убывает до значения U (кВ) за время, определяемое

 $t = \alpha R C \log_2 \frac{U_0}{U}$ (c), где α =0,7– постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошло 21 с. Ответ дайте в киловольтах.

- **28)** Задание 10. Гоночный автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением а км/ч². Скорость v конце пути вычисляется по формуле $v=\sqrt{2la}$, где пройденный автомобилем путь в км. Определите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 250 метров, приобрести скорость 60 км/ч. Ответ выразите в км/ч².
- **29)** Задание 10. Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза с главным фокусным расстоянием f = 80 см. Расстояние d_1 от линзы до лампочки может изменяться в пределах от 330 до 350 см, а расстояние d_2 от линзы до экрана в пределах от 80 до 105 см. Изобра-

жение на экране будет чётким, если выполнено соотношение $1/d_1 + 1/d_2 = 1/f$. Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы её изображение на экране было чётким. Ответ выразите в сантиметрах.

- **30**) Задание **10**. Высота над землёй подброшенного вверх мяча меняется по закону $h(t) = 1,6+8t-5t^2$, где h-высота в метрах, t- время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трёх метров?
- **31**) **Задача 11.** Часы со стрелками показывают 9 часов 7 минут. Через сколько минут минутная стрелка в третий раз поравняется с часовой?
- **32**) **Задание 11.** Расстояние между городами A и B равно 150 км. Из города A в город B выехал автомобиль, а через 30 минут следом за ним со скоростью 90 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.

Ответы:

11 12 1,8 2 2 2,5 0,2 6	2	0,5

11	12	13	14	15	16	17	18	19	20
24	30	0,5	25	45	-7	4	5	32	0,9

21	22	23	24	25	26	27	28	29
68	144	12	9	-2	-3	3,75	7200	336

30	31	32
1.2	174	90